Вход в аккаунт

Вы здесь

Звуковые волны

Содержание

 

Введение 
Историческая справка
Основные понятия акустики

Звуковые частоты
Звуковые явления
Свойства звука
Скорость распространения звука
Музыкальная акустика
Резонанс в акустике
Анализ и синтез звука
Эффект Доплера в акустике
Звуковые удары
Шумы
Ультразвуки и инфразвуки
Применение звуковых волн
 Звукозапись и фонограф Эдисона
 Звуколокация
 Применение ультра и инфразвуков
 Ультразвуковая обработка

Введение

Мир, окружающий нас, можно назвать миром звуков. Звучат вокруг нас голоса людей и музыка, шум ветра и щебет птиц, рокот моторов и шелест листвы. С помощью речи люди общаются, с помощью слуха получают информацию об окружающем мире. Не меньшее значение звук имеет для животных. С точки зрения физики, звук - это механические колебания, которые распространяются в упругой среде: воздухе, воде, твёрдом теле и т.п.

Способность человека воспринимать упругие колебания,  слушать их отразились в названии учения о звуке - акустика (от греческого akustikos - слуховой, слышимый). Вообще человеческое ухо слышит звук только тогда, когда на слуховой аппарат уха действуют механические колебания с частотой не ниже 16 Гц но не выше 20 000 Гц. Колебания же с более низкими или с более высокими частотами для человеческого уха неслышимы.

Вопросы, которыми занимается акустика, очень  разнообразны. Некоторые из них связаны со свойствами и особенностями нашего слуха. Предметом физиологической акустики и является сам орган слуха, его устройство и действие. Архитектурная акустика изучает распространение звука в помещениях, влияние на звук размеров и формы помещений, свойств материалов, покрывающих стены и потолки, и т.д.  При этом опять имеется в виду слуховое восприятие звука. Музыкальная акустика исследует музыкальные инструменты и условия их наилучшего звучания. Физическая акустика занимается изучением самих звуковых колебаний, а за последнее время охватила и колебания, лежащие за пределами слышимости (ультраакустика). Она широко использует разнообразные методы для превращения механических колебаний в электрические и обратно (электроакустика). Применительно к звуковым колебаниям в число задач  физической акустики входит и выяснение физических явлений, обусловливающих те или иные качества звука, различаемые на слух.

Историческая справка

Звуки начали изучать ещё в далёкой древности. Первые наблюдения по  акустики  были  проведены  в  VI веке до нашей эры. Пифагор установил связь между высотой тона и длиной струны или трубы издавающей звук.

В IV в. до н.э. Аристотель первый правильно представил, как распространяется звук в воздухе. Он сказал, что звучащее тело вызывает сжатие и разрежение воздуха и объяснил эхо отражением звука от препятствий.
В XV веке Леонардо да Винчи сформулировал принцип  независимости звуковых волн от различных источников.
В 1660 году в опытах Роберта Бойля было доказано, что воздух является проводником звука (в вакууме звук не   распространяется).
В 1700 - 1707 гг. вышли вышли мемуары Жозефа Савёра по акустике, опубликованные Парижской Академией наук. В этих мемуарах Савёр рассматривает явление, хорошо известное  конструкторам органов: если две трубы органа издают одновременно два звука, лишь немного отличающиеся по высоте, то слышны периодические усиления звука, подобные барабанной дроби. Савёр объяснил это явление периодическим совпадением колебаний обоих звуков. Если, например, один из двух звуков соответствует 32 колебаниям в секунду, а другой - 40 колебаниям , то конец четвёртого колебания первого звука совпадает с концом пятого колебания второго звука и, таким образом происходит усиление звука. От органных труб Савёр перешёл к экcперементальному исследованию колебаний струны, наблюдая узлы и пучности колебаний (эти названия, существующие и до сих пор в науке, введены им), а также заметил, что при возбуждении струны наряду с основной нотой звучат и другие ноты, длина волны которых составляет  1/2, 1/3, 1/4, ... от основной. Он назвал эти ноты высшими гармоническими тонами, и этому названию суждено было остаться в науке. Наконец, Савёр первый пытался определить границу восприятия колебаний как звуков: для низких звуков он указал границу в 25 колебаний в секунду, а для высоких - 12 800.
Затем, Ньютон, основываясь  на этих экспериментальных работах Савёра, дал первый расчет длины волны звука и пришел к выводу, хорошо известному сейчас в физике, что для любой открытой трубы длина волны испускаемого звука равна удвоенной длине трубы. "И в этом состоят главнейшие звуковые явления".
После экспериментальных  исследований Савёра к математическому рассмотрению задачи о колеблющейся струне в 1715 г. приступил английский математик Брук Тейлор, положив этим начало математической физике в собственном смысле слова. Ему удалось рассчитать зависимость числа колебаний струны от её длины, веса, натяжения и местного значения ускорения силы тяжести. Эта задача сразу  же  стала  широко  известна  и привлекла внимание почти всех математиков XVIII века, вызвав долгую и плодотворную дискуссию. Ею занимались среди прочих Иоганн Бернулли и его сын Даниил Бернулли, Риккати и Даламбер. Последний нашел уравнения в частных производных, определяющие малые колебания однородной струны, и  проинтегрировал их методом, применяемым и поныне. Но наиболее существенный вклад внес Эйлер. Ему мы обязаны полной теорией колебаний струны, начало построению которой было положено в 1739 году в его труде "Опыт новой теории музыки"  и  продолжалось в многочисленных последующих докладах. В частности, из теории Эйлера вытекало, что скорость распространения волны по струне не зависит от длины волны возбуждаемого звука. Эйлер производил также теоретические исследования колебаний стержней, колец, колоколов, но полученные результаты не совпали с результатами экспериментальной проверки, предпринятой немецким физиком Эрнестом Флоресом Фридрихом Хладни, которого считают отцом экспериментальной акустики. Хладни первым точно исследовал колебания камертона и в 1796 году установил законы колебаний стержней.
Фактическое объяснение эха, явления довольно капризного, также принадлежит Хладни, по крайней мере в существенных частях. Ему мы обязаны и новым экспериментальным определением верхней границы слышимости звука, соответствующей 20 000 колебаний в секунду. Эти измерения, многократно повторяемые физиками до сих пор, весьма  субъективны  и  зависят от интенсивности и характера звука. Но особенно известны опыты Хладни в 1787 году по исследованию колебаний пластин, при которых образуются красивые "акустические фигуры", носящие названия фигур Хладни и получающиеся, если посыпать колеблющуюся пластинку песком. Эти экспериментальные исследования поставили новую задачу математической физики - задачу о колебаниях мембраны.
 

Загрузить весь реферат (.doc)

 

 

 

Рейтинг@Mail.ru Индекс цитирования